ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
J. C. Westmoreland
Nuclear Science and Engineering | Volume 2 | Number 5 | September 1957 | Pages 533-546
Technical Paper | doi.org/10.13182/NSE57-A25423
Articles are hosted by Taylor and Francis Online.
An analysis of compact natural circulation steam generators for nuclear power plants has been made to facilitate the prediction of certain dynamic characteristics of the systems in terms of their pertinent geometric parameters. A simple two-phase annular flow model is proposed to permit analytical solutions for the thermal driving head and friction pressure loss in the riser. The results of this model have been interpreted in terms of the Martinelli correlation and a favorable comparison is presented. The equations from the analysis have been programmed for solution by the IBM 650 digital computer and several steam generator configurations studied with regard to geometric parameters and also thermodynamic operating state. The main consequence of rapid power changes with these specific units is the carryover of moisture to the turbines which implies adequate separator margin can not be provided for. The capability of the evaporator to supply adequate steam for any desired power change has not been questioned; however, it is noted that a reduction in downcomer flow during a transient could reduce its capacity to do so.