ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
B. M. Abraham, H. E. Flotow, R. D. Carlson
Nuclear Science and Engineering | Volume 2 | Number 4 | July 1957 | Pages 501-512
Technical Paper | doi.org/10.13182/NSE57-A25415
Articles are hosted by Taylor and Francis Online.
Suspensions of UO2 in NaK alloy are being studied as possible reactor fuels. Two loops have so far been constructed of one-half inch stainless steel tubing with a test volume of approximately 150 cc. The Mark I loop was operated for 400 hours between 450 and 600°C, while circulating a slurry of 4.3 volume % UO2 (36.0 weight per cent). The radioactive monitor indicated that the slurry was uniformly suspended at a flow rate of 2 ft/sec. It was found that above 500°C the UO2 dropped out of suspension, but was immediately resuspended when the temperature dropped below the critical value of 500°C. The effect was reversible and could not be eliminated even at the fastest flows. The Mark II loop incorporated a density measuring device in order to correlate the radioactivity monitor with the density of the slurry. It was found, as previously suspected, that when the counts reached maximum value the density also was a maximum, at the calculated value. One gram of powdered uranium metal added to the loop with the UO2 completely eliminated the settling above 500°C observed in the Mark I loop. There was no evidence for corrosion or erosion of the loop, and the particle size of UO2 was practically unchanged after operation at the high temperature. The UO2 could be resuspended immediately after prolonged settling.