ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
B. M. Abraham, H. E. Flotow, R. D. Carlson
Nuclear Science and Engineering | Volume 2 | Number 4 | July 1957 | Pages 501-512
Technical Paper | doi.org/10.13182/NSE57-A25415
Articles are hosted by Taylor and Francis Online.
Suspensions of UO2 in NaK alloy are being studied as possible reactor fuels. Two loops have so far been constructed of one-half inch stainless steel tubing with a test volume of approximately 150 cc. The Mark I loop was operated for 400 hours between 450 and 600°C, while circulating a slurry of 4.3 volume % UO2 (36.0 weight per cent). The radioactive monitor indicated that the slurry was uniformly suspended at a flow rate of 2 ft/sec. It was found that above 500°C the UO2 dropped out of suspension, but was immediately resuspended when the temperature dropped below the critical value of 500°C. The effect was reversible and could not be eliminated even at the fastest flows. The Mark II loop incorporated a density measuring device in order to correlate the radioactivity monitor with the density of the slurry. It was found, as previously suspected, that when the counts reached maximum value the density also was a maximum, at the calculated value. One gram of powdered uranium metal added to the loop with the UO2 completely eliminated the settling above 500°C observed in the Mark I loop. There was no evidence for corrosion or erosion of the loop, and the particle size of UO2 was practically unchanged after operation at the high temperature. The UO2 could be resuspended immediately after prolonged settling.