ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
J. W. Boyle, H. A. Mahlman
Nuclear Science and Engineering | Volume 2 | Number 4 | July 1957 | Pages 492-500
Technical Paper | doi.org/10.13182/NSE57-A25414
Articles are hosted by Taylor and Francis Online.
Concentrated thorium nitrate solution has been proposed as a blanket material in power-breeder reactors. The radiation stability, especially of the nitrate group, is therefore of considerable importance. The radiation-induced decomposition of thorium nitrate solutions was studied as a function of concentration, type of radiation (fission recoils, pile radiations, gamma rays), temperature, and total energy absorbed. The principal products were H2 and O2 from decomposition of the water, and N2, O2, and oxides of nitrogen from decomposition of the nitrate. Hydrogen yield decreased with increasing thorium nitrate concentration, a behavior similar to that for uranium solutions. Nitrogen yield was independent of temperature, but increased with increasing nitrate concentration and with increasing linear energy transfer along the paths of the ionizing particles. The 100-ev yield of N2 in 2.73 molal solution was 0.06 for fission particle decomposition, 0.006 for pile radiation (mixed fast neutrons and γ rays) and 0.001 for γ radiation alone. The oxide of nitrogen produced with the largest yield was N2O and amounted to about ten per cent of the N2 yield. In-pile autoclave measurements indicated little radiation-induced back reaction of the nitrogen.