ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ku Young Chung, Chang Hyo Kim
Nuclear Science and Engineering | Volume 151 | Number 2 | October 2005 | Pages 212-223
Technical Paper | doi.org/10.13182/NSE05-A2541
Articles are hosted by Taylor and Francis Online.
As an efficiency enhancement numerical scheme of transient nonlinear nodal calculations, a three-grid correction scheme (3GCS) using a modified W cycle based on three grid structures of three-dimensional (3-D) four-node-per-assembly (4N/A), 3-D 1N/A, and two-dimensional (2-D) 1N/A is developed. Its computational efficiency is compared with a single-grid biconjugate gradient stabilized (BICGSTAB) iteration scheme in popular use in terms of 3-D 4N/A nonlinear analytical nodal method solutions to Nuclear Energy Agency Committee on Reactor Physics pressurized water reactor rod ejection benchmark problems. It is shown that in computational efficiency, the 3GCS excels the BICGSTAB iteration method using preconditioners such as Jacobi, incomplete lower and upper (ILU), and 3-D block incomplete lower and upper (BILU3D) preconditioners. It is also shown that coarse-grid residual equations based on the 3-D 1N/A grid structure can predict temporal truncation errors as accurately as the 3-D 4N/A fine-grid residual equation but with considerably less overhead computing time for variable time-step size control calculations by a step doubling method. In addition, incorporation of preconditioners into the 3GCS is shown to enhance further efficiency of the nonpreconditioned 3GCS. From these results, it is concluded that the temporal adaptive 3GCS employing coarse-grid residual equations for temporal step-size control as well as the preconditioner like the BILU3D can provide a very efficient iterative solution scheme for transient nonlinear nodal calculations.