ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
THOMAS J. BURNETT
Nuclear Science and Engineering | Volume 2 | Number 3 | May 1957 | Pages 382-393
Technical Paper | doi.org/10.13182/NSE57-A25403
Articles are hosted by Taylor and Francis Online.
The potential hazard resulting from the accidental release of the fission products accumulated in a reactor enters into both design and site selection. This hazard is associated principally with the resultant internal exposure which is greatest from isotopes with long half-lives. A useful index of a reactor's potential hazard is the accumulated number of activity quantities each capable of 25 rem total bone exposure. This hazard index is sensitive to the relative composition of these fission products and is given by the empirical equation: HI = 112.5 P0.37 (Pt)0.63, in which P is the power in watts at which the reactor is operated for t days. This equation, valid over the time range of principal interest (30 to 1000 days), permits comparison of potential hazard for constant burnup (the Pt product) and/or other design parameters.