ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
MARK NELKIN
Nuclear Science and Engineering | Volume 2 | Number 2 | April 1957 | Pages 199-212
Technical Paper | doi.org/10.13182/NSE57-A25387
Articles are hosted by Taylor and Francis Online.
The energy distribution of neutrons thermalized in an infinite homogeneous medium containing a crystalline moderator and absorbing material is investigated with the aid of a simplified model of the crystal. A Debye phonon spectrum is assumed, and a formal expansion in powers of the ratio of neutron mass to moderator atom mass is used. The inelastic scattering is approximated by the term of first order in the mass ratio, and interference effects are neglected. The resulting energy-change kernel is not correct in detail at high energies, but it correctly gives the average logarithmic energy loss, and therefore can be used in the age theory approximation at energies well above thermal. Solutions of the integral equation for the energy spectrum have been obtained on the IBM-650 for (1/υ) absorption. These are compared to solutions of the differential equation for a heavy gaseous moderator. It is found that the thermal spectra are very insensitive to the choice of scattering model, even when large departures from thermal equilibrium occur.