ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
W. E. Parkins
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 91-105
Technical Paper | doi.org/10.13182/NSE62-A25376
Articles are hosted by Taylor and Francis Online.
Analysis of observations on surface film formation has indicated a single process to be primarily responsible. This process involves transport of particles present in the coolant to the surface, and attachment there through the establishment of chemical bonds. Brownian motion is the principal mechanism bringing partiales into contact with the surface, but many factors can be important in determining whether a given encounter will lead to permanent attachment of a particle. One of these factors, frequently present in reactor cores, is a surface electrostatic force caused by the flow of electrical currents. These currents are primarily the result of beta electron and photoelectron emission. Details of the various electrical parameters are analyzed for situations encountered in heterogeneous and homogeneous reactors. It is shown that the surface electrostatic force is critically dependent on the current density crossing the coolant-film interface, and on the electric resistivity of the surface of the film in contact with the coolant. Recommendations are made for means to prevent the formation of objectionable surface films. Attention is directed to the fact that the homogeneous slurry type of reactor combines conditions which can lead to the deposition of fuel bearing films on in-core surfaces.