ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Donald G. Schweitzer
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 59-62
Technical Paper | doi.org/10.13182/NSE62-A25370
Articles are hosted by Taylor and Francis Online.
The activation energy for graphite oxidation was obtained from the change in the “stable length” of channel with temperature. The maximum temperature at which thermal equilibrium (between the heat generated by graphite oxidation and the heat removed by the air stream) will occur in a channel can be predicted from the heat transfer coefficient, the activation energy, and a single value of the graphite reactivity at any temperature. Above this maximum temperature, the total length of channel is thermally unstable. An equation is given expressing the length of channel that can be cooled as a function of temperature, flow rate, diameter, and reactivity.