ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Donald G. Schweitzer, George C. Hrabak, Robert M. Singer
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 39-45
Technical Paper | doi.org/10.13182/NSE62-A25367
Articles are hosted by Taylor and Francis Online.
When air is passed through a hot graphite channel, the heat produced by the chemical reactions is due to both the C-O2 and CO-O2 reactions. The data show that the largest and most rapid temperature rises are due to the CO-O2 gas phase reaction. Serious instability (where the heat generated by the reactions is greater than the heat removed by the air stream) does not occur below 650°C and is confined to flow rates where the Reynolds numbers lie between 2000 and 8000. Although the experiments were designed to provide information for operation of the BNL Reactor, the results were found to be general in nature.