ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Orrington E. Dwyer, Herbert E. Howe, Edward R. Avrutik
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 15-22
Technical Paper | doi.org/10.13182/NSE62-A25364
Articles are hosted by Taylor and Francis Online.
The liquid-metal-fuel reactor concept, which has received much attention in recent years, in its commonest version is a thermal breeder and employs as a fuel a dilute solution of U in molten Bi. About 28% of the nonvolatile fission products are less reactive chemically than U. This group, customarily referred to as the FPN group, is further divided into three subgroups according to the proposed methods of removal. The FPN-I's would be removed by oxidizing them to chlorides with fused salts, the FPN-II's by precipitating them directly from the liquid fuel, and the FPN-III's by reaction with Zn to form low-density intermetallic compounds which are insoluble in Bi. The FPN-II's, representing about 90% of the FPN's, would be removed continuously, while the others, because of their low yields or relatively low thermal cross sections, would be allowed to build up in the fuel for several years without causing any particular concern. Eventually, however, they would have to be removed. The FPN-I's would be removed by the same continuous process proposed for removing those nonvolatile fission products which are more reactive than U, while the FPN-III's would be removed in a batch process similar to that currently used in the refining of Bi. The following paper includes information on the rates of build-up of the several important FPN elements in the fuel, steady-state concentrations of the FPN-II elements, reactor poisoning level of the FPN's, and experimental results in support of the proposed methods of removal.