ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Jeffery Lewins, Capt. RE
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 10-14
Technical Paper | doi.org/10.13182/NSE62-A25363
Articles are hosted by Taylor and Francis Online.
The equations describing a reactor system are sometimes nonlinear and do not admit a solution for the neutron density that is separable into a function of time only and a function of the remaining variables. An appropriate variational principle is given by demanding that the calculation of the observable nature of the reactor is insensitive to the value employed for the density, thus obtaining an equation for the optimum distribution of detectors to measure the observable behavior. This optimum weighting function is not identical with the conventional adjoint function or importance in the nonlinear range but the conventional treatment of linear systems is found to be a special case of our general principle. It is shown that the approximate treatment of nonlinear systems as eigenvalue systems is fundamentally unsound.