ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Jeffery Lewins, Capt. RE
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 10-14
Technical Paper | doi.org/10.13182/NSE62-A25363
Articles are hosted by Taylor and Francis Online.
The equations describing a reactor system are sometimes nonlinear and do not admit a solution for the neutron density that is separable into a function of time only and a function of the remaining variables. An appropriate variational principle is given by demanding that the calculation of the observable nature of the reactor is insensitive to the value employed for the density, thus obtaining an equation for the optimum distribution of detectors to measure the observable behavior. This optimum weighting function is not identical with the conventional adjoint function or importance in the nonlinear range but the conventional treatment of linear systems is found to be a special case of our general principle. It is shown that the approximate treatment of nonlinear systems as eigenvalue systems is fundamentally unsound.