ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
M. C. Cannon, W. R. Grimes, W. T. Ward, G. M. Watson
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 4-9
Technical Paper | doi.org/10.13182/NSE62-A25362
Articles are hosted by Taylor and Francis Online.
Adsorption isotherms for xenon on AGOT-grade graphite, having a surface area of 0.64 meter2/ gm, were determined at −79, 0, 20, 30, and 80°C in order to determine whether the presence of helium affects the adsorption behavior of xenon. The isotherms obtained from xenon-helium mixtures were essentially the same as those obtained using pure xenon gas. The calculated heats of adsorption for xenon range between 3500 and 3700 cal/mole and approximate the heat of vaporization of 3270 cal/mole reported in the literature. The volume of xenon adsorbed (cm3 at STP) per gram of graphite, a, versus xenon partial pressure, p (mm Hg), may be expressed by the equation a = bp0.8 over the ranges of temperature and pressure investigated. The values of b are 2.14 × 10−4 and 6.33 × 10−5 at 0 and 80°C, respectively. Based on straight line extrapolations of log plots of the adsorption isosteres to higher temperatures, b would have values of 6.5 × 10−6 and 4.1 × 10−6 at 500 and 750°C, respectively. Adsorption isotherms for argon were determined at −83 and 0°C and can be expressed by the same equation indicated above. At −83° and 0°C b has values of 1.00 × 10−4 and 1.60 × 10−5, respectively.