ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Hangbok Choi, Do Heon Kim
Nuclear Science and Engineering | Volume 151 | Number 1 | September 2005 | Pages 88-94
Technical Paper | doi.org/10.13182/NSE05-A2531
Articles are hosted by Taylor and Francis Online.
An optimum refueling simulation method was developed for application to a Canada deuterium uranium 713-MW(electric) (CANDU-6) reactor. The objective of the optimization was to maintain the operating range of the zone controller unit (ZCU) water level so that the reference zone power distribution is reproduced following the refueling operation. The zone controller level on the refueling operation was estimated by the generalized perturbation method, which provides sensitivities of the zone power to an individual refueling operation and the zone controller level. By constructing a system equation of the zone power, the zone controller level was obtained, which was used to find the most suitable combination of the refueling channels. The 250-full-power-day refueling simulations showed that the channel and bundle powers are well controlled below the license limits when the ZCU water level remains in the typical operating range.