ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Alain Hébert
Nuclear Science and Engineering | Volume 151 | Number 1 | September 2005 | Pages 1-24
Technical Paper | doi.org/10.13182/NSE151-1-24
Articles are hosted by Taylor and Francis Online.
Improvement of the lattice code component related to resonance self-shielding calculations is described. The proposed self-shielding model is based on a subgroup flux equation with probability tables, as implemented in the CALENDF approach of P. Ribon. A new type of correlated two-dimensional probability table is introduced for the representation of the slowing-down effect in the resolved energy domain. The resulting formalism makes possible a better representation of distributed self-shielding effects.A new numerical scheme is also proposed to represent the mutual shielding effect of overlapping resonances between different isotopes in the context of the Ribon subgroup equations. The interference effects between two resonant isotopes are represented by a correlated weight matrix also computed using a CALENDF approach. The model was designed with the primary goal of allowing the straightforward replacement of legacy self-shielding components in typical lattice codes to gain improved accuracy without any noticeable increase in CPU resources.Finally, a validation is presented where the absorption rates are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to Rowland's pin-cell benchmarks, are also presented. The need to represent mutual shielding effects, at least for mixed-oxide fuel is demonstrated.