ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
T. Yoshida, A. Y. K. Chen, J. Nozawa, Naohiro Sugie, T. Tanabe
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 362-367
Technical Note | doi.org/10.13182/NSE05-A2523
Articles are hosted by Taylor and Francis Online.
This is a proposal attempting to convert gamma-ray energy into electric energy via differentiated secondary electron generation by gamma rays interacting with two different metal components. The proposed systems consist of two different metal sheets, sandwiching an insulator material, which are arranged in either "roll" or "plate" geometry. Under gamma-ray irradiation, both types of systems produce electric currents that vary with the properties and geometrical structures of the metals. In this preliminary study, the maximum generated electric current and power for the roll system were 0.58 A and 0.093 W, respectively, with 0.01-mm-thick aluminum and 0.1-mm-thick stainless steel sheets.The Monte Carlo N-Particle (MCNP) simulations performed in conjunction with the experimental study have shown that the electric current corresponds to the difference between the two metal components in terms of the number of electrons escaping the metals. The difference can be increased by optimizing the combination of thicknesses, the Z numbers of the two metal components, and the geometrical structures of the system, agreeing with the experimental study. These results strongly suggest that the electric currents in the proposed systems can be predicted on the basis of the simulation. Finally, we propose the application of an electric cell driven by a gamma-ray source and shielded by the electrodes themselves.