ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
T. Yoshida, T. Sawasaki, A. Y. K. Chen, T. Tanabe
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 357-361
Technical Paper | doi.org/10.13182/NSE05-A2522
Articles are hosted by Taylor and Francis Online.
A technique has been proposed to increase the efficiency of hydrogen production from water by gamma-ray radiolysis as an effective use of radioactive waste. This is possible by putting special metal structures into water to enhance the conversion of mega-electron-volt-range gamma rays to low-energy electrons, which escape from metal into water. The experimental results showed that hydrogen production could be significantly enhanced by carefully controlling the thickness of metal components and the proximity with adjacent metal components. A honeycomb-like structure composed of stainless steel tubes was confirmed to provide the best performance for hydrogen production. These experimental results successfully demonstrated that the modification of metal structure can control the energy and the number of electrons escaping from the metal and actually leads to enhancement of hydrogen production in water.