ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
A. Y. K. Chen, T. Yoshida, T. Tanabe
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 349-356
Technical Paper | doi.org/10.13182/NSE05-A2521
Articles are hosted by Taylor and Francis Online.
The authors have proposed a technique using special metal structures to efficiently convert gamma rays to low-energy electrons, with possible applications such as detoxification of water and hydrogen production using gamma rays from radioactive waste. The present study employed the Monte Carlo N-Particle (MCNP) transport code to understand in detail the mechanisms of low-energy photon and electron generation from gamma rays in water vessels containing various metal structures. The study demonstrated that the amount of low-energy electrons in water generally increases with (a) the Z number of the metal, (b) the volume of the metal, (c) the ability of low-energy electrons to escape from the metal and into the water region, (d) the closeness with adjacent metal plates, and (e) the ability of metal plates to reflect high-energy primary photons to delay their exit from the vessel. Based on these basic understandings, more sophisticated structures were designed and compared in computer simulations. The simulation results indicated that closed-type structures, such as a honeycomb tube, can provide better performance in terms of efficiently generating low-energy electrons in water.