ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
A. Y. K. Chen, T. Yoshida, T. Tanabe
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 349-356
Technical Paper | doi.org/10.13182/NSE05-A2521
Articles are hosted by Taylor and Francis Online.
The authors have proposed a technique using special metal structures to efficiently convert gamma rays to low-energy electrons, with possible applications such as detoxification of water and hydrogen production using gamma rays from radioactive waste. The present study employed the Monte Carlo N-Particle (MCNP) transport code to understand in detail the mechanisms of low-energy photon and electron generation from gamma rays in water vessels containing various metal structures. The study demonstrated that the amount of low-energy electrons in water generally increases with (a) the Z number of the metal, (b) the volume of the metal, (c) the ability of low-energy electrons to escape from the metal and into the water region, (d) the closeness with adjacent metal plates, and (e) the ability of metal plates to reflect high-energy primary photons to delay their exit from the vessel. Based on these basic understandings, more sophisticated structures were designed and compared in computer simulations. The simulation results indicated that closed-type structures, such as a honeycomb tube, can provide better performance in terms of efficiently generating low-energy electrons in water.