ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
A. Y. K. Chen, T. Yoshida, T. Tanabe
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 349-356
Technical Paper | doi.org/10.13182/NSE05-A2521
Articles are hosted by Taylor and Francis Online.
The authors have proposed a technique using special metal structures to efficiently convert gamma rays to low-energy electrons, with possible applications such as detoxification of water and hydrogen production using gamma rays from radioactive waste. The present study employed the Monte Carlo N-Particle (MCNP) transport code to understand in detail the mechanisms of low-energy photon and electron generation from gamma rays in water vessels containing various metal structures. The study demonstrated that the amount of low-energy electrons in water generally increases with (a) the Z number of the metal, (b) the volume of the metal, (c) the ability of low-energy electrons to escape from the metal and into the water region, (d) the closeness with adjacent metal plates, and (e) the ability of metal plates to reflect high-energy primary photons to delay their exit from the vessel. Based on these basic understandings, more sophisticated structures were designed and compared in computer simulations. The simulation results indicated that closed-type structures, such as a honeycomb tube, can provide better performance in terms of efficiently generating low-energy electrons in water.