ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Francisco J. Souto, Robert H. Kimpland, A. Sharif Heger
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 322-335
Technical Paper | doi.org/10.13182/NSE05-A2519
Articles are hosted by Taylor and Francis Online.
One of the primary methods to produce medical isotopes, such as 99Mo, is by irradiation of uranium targets in heterogeneous reactors. Solution reactors present a potential alternative to produce medical isotopes. The Medical Isotope Production Reactor (MIPR) concept has been proposed to produce medical isotopes with lower uranium consumption and waste than those in heterogeneous reactors. Commercial production of medical isotopes in solution reactors requires steady-state operation at ~200 kW. At this power regime, fuel-solution temperature increase and radiolytic-gas bubble formation introduce a negative reactivity feedback that has to be mitigated. A model based on the point reactor kinetic equations has been developed to investigate these reactivity effects. This model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA) and shows the feasibility of solution reactors for the commercial production of medical isotopes.