ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Nozomu Fujimoto, Kiyonobu Yamashita, Naoki Nojiri, Mituo Takeuchi, Shingo Fujisaki, Masaaki Nakano
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 310-321
Technical Paper | doi.org/10.13182/NSE03-79
Articles are hosted by Taylor and Francis Online.
Annular cores were formed in start-up core physics tests of the High Temperature Engineering Test Reactor (HTTR) to obtain experimental data for verification of design codes. The first criticality, control rod (CR) positions at critical conditions, neutron flux distribution, excess reactivity, etc., were measured as representative data. These data were evaluated with the MVP Monte Carlo code, which can consider directly the heterogeneity of coated fuel particles (CFPs) distributed randomly in fuel compacts. It was made clear that the heterogeneity effect of CFPs on keff's for annular cores is smaller than that for fully loaded cores. The measured and the calculated keff's agreed with each other with differences <1%k. The calculated neutron flux distributions agreed with the measured results. A revised method was applied for evaluation of excess reactivity to exclude the negative shadowing effect of CRs. The revised and calculated excess reactivity agreed with differences <1%k/k.