ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Nozomu Fujimoto, Kiyonobu Yamashita, Naoki Nojiri, Mituo Takeuchi, Shingo Fujisaki, Masaaki Nakano
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 310-321
Technical Paper | doi.org/10.13182/NSE03-79
Articles are hosted by Taylor and Francis Online.
Annular cores were formed in start-up core physics tests of the High Temperature Engineering Test Reactor (HTTR) to obtain experimental data for verification of design codes. The first criticality, control rod (CR) positions at critical conditions, neutron flux distribution, excess reactivity, etc., were measured as representative data. These data were evaluated with the MVP Monte Carlo code, which can consider directly the heterogeneity of coated fuel particles (CFPs) distributed randomly in fuel compacts. It was made clear that the heterogeneity effect of CFPs on keff's for annular cores is smaller than that for fully loaded cores. The measured and the calculated keff's agreed with each other with differences <1%k. The calculated neutron flux distributions agreed with the measured results. A revised method was applied for evaluation of excess reactivity to exclude the negative shadowing effect of CRs. The revised and calculated excess reactivity agreed with differences <1%k/k.