ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Y. Perets, R. Harari, E. Sher
Nuclear Science and Engineering | Volume 150 | Number 2 | June 2005 | Pages 237-244
Technical Paper | doi.org/10.13182/NSE05-A2512
Articles are hosted by Taylor and Francis Online.
The vapor explosion phenomenon is investigated experimentally for a geometrical arrangement in which a cold liquid (water) jet is injected into a hot liquid surface (tin). Medium-scale experiments using 1 kg of molten tin were performed in an open geometry experiment system. In the first phase of the research, the influence of the injection mass flow rate on the likelihood of vapor explosion was investigated in order to map the various relevant regimes. In the second phase, the influence of some selected parameters on the interaction was studied to characterize the relevant parameters of the vapor explosion phenomenon.The range of the initial tin and water temperatures that leads to vapor explosion has been determined in order to define the thermal interaction zone. It is noticed that vapor explosion can occur at high water temperatures even near the saturation point. The delay time for the explosion to occur and the degree of the interaction violence were correlated with the initial tin and water temperatures. We also clarified the triggering point and noted a correlation between the quench temperature and the likelihood of the vapor explosion occurrence.