ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Takashi Takata, Akira Yamaguchi, Kaori Fukuzawa, Kiyoshi Matsubara
Nuclear Science and Engineering | Volume 150 | Number 2 | June 2005 | Pages 221-236
Technical Paper | doi.org/10.13182/NSE05-A2511
Articles are hosted by Taylor and Francis Online.
A numerical methodology of sodium-water reaction (SWR) and a coupling method of SWR and multiphase flow analysis are proposed. Two SWR models are considered. One is a surface reaction model, which assumes that water vapor reacts with liquid sodium at the gas-liquid interface. The surface reaction is likely to be dominant in the initial phase of SWR. The analogy between mass and heat transfers is assumed to evaluate the diffusion-controlled reaction rate. The other is a gas-phase reaction model. If chemical reaction heating due to the surface reaction is large enough to vaporize the liquid sodium, it turns over in the gas-phase reaction. In the gas-phase reaction, water vapor reacts with sodium gas. The reaction mechanisms in the gas-phase reaction are investigated using an ab initio molecular orbital method. The reaction rate of the gas-phase reaction described by the Arrhenius law is obtained from the transition-state theory or the capture theory. The reaction models are employed in a compressible multifluid and one-pressure model using the Highly Simplified Marker and Cell method for multiphase flow analysis. As numerical examples, surface reaction with multiphase flow analysis and simplified gas-phase reaction analyses are carried out. It is confirmed that the present method is practically applicable to the coupling phenomena of SWR and multiphase flow.