ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Hangbok Choi, Gyuhong Roh, Donghwan Park
Nuclear Science and Engineering | Volume 150 | Number 1 | May 2005 | Pages 37-55
Technical Paper | doi.org/10.13182/NSE05-A2500
Articles are hosted by Taylor and Francis Online.
Benchmark calculations of the Canada deuterium uranium reactor design and analysis codes were performed for the Monte Carlo and conventional methods using Phase-B measurement data of the Wolsong Nuclear Power Plant 2. In this study, the benchmark calculations were done for the criticality, boron worth, reactivity device worth, and flux scan. For the benchmark calculation of the Monte Carlo method by MCNP-4B, the criticality was estimated within 4 mk. The reactivity worth of the control devices was consistent with the measurement data within 15%. For the benchmark calculation of the conventional method composed of WIMS-AECL, SHETAN, and RFSP, the criticality was also predicted within 4 mk. The reactivity device worth was generally consistent with the measured data except for the strong absorbers such as shutoff rods and mechanical control absorbers. The results of the flux distribution calculations were also satisfactory for both code systems.