ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. W. Eerkens
Nuclear Science and Engineering | Volume 150 | Number 1 | May 2005 | Pages 1-26
Technical Paper | doi.org/10.13182/NSE05-A2498
Articles are hosted by Taylor and Francis Online.
Explicit relations are developed to estimate isotope enrichment factors for iQF6 vapors diluted in a carrier gas G, which are isotope selectively laser-excited and flow subsonically through a wall-cooled cylindrical cell. At gas mix pressures below 100 millitorr, laser-assisted condensation repression on cold walls can induce isotope separations for some vapors at certain cryogenic temperatures. For example, for iSF6/N2 mixtures, narrow temperature "windows" are found in the 70 to 90 K region where enrichments exceed i = 33 = 1.7. For iUF6/G gas mixes, enrichment under full condensation conditions is not possible since the surface potential well (~1150 cm-1) of a UF6 condensate layer is higher than the vibration-to-translation conversion quantum of the v3 vibration (~628 cm-1). However, for UF6* adsorptions on a bare surface of F2-passivated gold with well depth of 400 cm-1 or less, initial isotope enrichments with ~ 1.1 are possible before the surface is covered with UF6 condensate. Throughputs in cold-wall isotope separations are low because of low operating pressures. For enrichments of milligrams of a radioactive isotope in nuclear medicine, this is still useful and offers a low-footprint alternative to calutron or ultracentrifuge separations. Since feed and product streams are the same, the method lends itself to multistaging, with one laser irradiating four or more chambers in series.