ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
J. W. Eerkens
Nuclear Science and Engineering | Volume 150 | Number 1 | May 2005 | Pages 1-26
Technical Paper | doi.org/10.13182/NSE05-A2498
Articles are hosted by Taylor and Francis Online.
Explicit relations are developed to estimate isotope enrichment factors for iQF6 vapors diluted in a carrier gas G, which are isotope selectively laser-excited and flow subsonically through a wall-cooled cylindrical cell. At gas mix pressures below 100 millitorr, laser-assisted condensation repression on cold walls can induce isotope separations for some vapors at certain cryogenic temperatures. For example, for iSF6/N2 mixtures, narrow temperature "windows" are found in the 70 to 90 K region where enrichments exceed i = 33 = 1.7. For iUF6/G gas mixes, enrichment under full condensation conditions is not possible since the surface potential well (~1150 cm-1) of a UF6 condensate layer is higher than the vibration-to-translation conversion quantum of the v3 vibration (~628 cm-1). However, for UF6* adsorptions on a bare surface of F2-passivated gold with well depth of 400 cm-1 or less, initial isotope enrichments with ~ 1.1 are possible before the surface is covered with UF6 condensate. Throughputs in cold-wall isotope separations are low because of low operating pressures. For enrichments of milligrams of a radioactive isotope in nuclear medicine, this is still useful and offers a low-footprint alternative to calutron or ultracentrifuge separations. Since feed and product streams are the same, the method lends itself to multistaging, with one laser irradiating four or more chambers in series.