ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
J. W. Eerkens
Nuclear Science and Engineering | Volume 150 | Number 1 | May 2005 | Pages 1-26
Technical Paper | doi.org/10.13182/NSE05-A2498
Articles are hosted by Taylor and Francis Online.
Explicit relations are developed to estimate isotope enrichment factors for iQF6 vapors diluted in a carrier gas G, which are isotope selectively laser-excited and flow subsonically through a wall-cooled cylindrical cell. At gas mix pressures below 100 millitorr, laser-assisted condensation repression on cold walls can induce isotope separations for some vapors at certain cryogenic temperatures. For example, for iSF6/N2 mixtures, narrow temperature "windows" are found in the 70 to 90 K region where enrichments exceed i = 33 = 1.7. For iUF6/G gas mixes, enrichment under full condensation conditions is not possible since the surface potential well (~1150 cm-1) of a UF6 condensate layer is higher than the vibration-to-translation conversion quantum of the v3 vibration (~628 cm-1). However, for UF6* adsorptions on a bare surface of F2-passivated gold with well depth of 400 cm-1 or less, initial isotope enrichments with ~ 1.1 are possible before the surface is covered with UF6 condensate. Throughputs in cold-wall isotope separations are low because of low operating pressures. For enrichments of milligrams of a radioactive isotope in nuclear medicine, this is still useful and offers a low-footprint alternative to calutron or ultracentrifuge separations. Since feed and product streams are the same, the method lends itself to multistaging, with one laser irradiating four or more chambers in series.