ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Eriksson, J. E. Cahalan, W. S. Yang
Nuclear Science and Engineering | Volume 149 | Number 3 | March 2005 | Pages 298-311
Technical Paper | doi.org/10.13182/NSE03-103
Articles are hosted by Taylor and Francis Online.
The ability of point kinetics to describe dynamic processes in accelerator-driven systems (ADSs) is investigated. Full three-dimensional energy-space-time-dependent calculations, coupled with thermal and hydraulic feedback effects, are performed and used as a standard of comparison. Various transient accident sequences are studied. Calculations are performed in the range of keff = 0.9594 to 0.9987 to provide insight into the dependence of the performance on the subcritical level. Numerical experiments are carried out on a minor-actinide-loaded and lead-bismuth-cooled ADS. It is shown that the point kinetics approximation is capable of providing highly accurate calculations in such systems. The results suggest better precision at lower keff levels. It is found that subcritical operation provides features that are favorable from a point kinetics view of application. For example, reduced sensitivity to system reactivity perturbations effectively mitigates any spatial distortions. If a subcritical reactor is subject to a change in the strength of the external source, or a change in reactivity within the subcritical range, the neutron population will adjust to a new stationary level. Therefore, within the normal range of operation, the power predicted by the point kinetics method and the associated error in comparison with the exact solution tends to approach an essentially bounded value. It was found that the point kinetics model is likely to underestimate the power rise following a positive reactivity insertion in an ADS, which is similar to the behavior in critical systems. However, the effect is characteristically lowered in subcritical versus critical or near-critical reactor operation.