ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
J. Coulot, F. Lavielle, A. Faggiano, N. Bellon, B. Aubert, M. Schlumberger, M. Ricard
Nuclear Science and Engineering | Volume 149 | Number 2 | February 2005 | Pages 124-130
Technical Paper | doi.org/10.13182/NSE05-A2483
Articles are hosted by Taylor and Francis Online.
Standard macroscopic methods used to assess the dose in nuclear medicine are limited to cases of homogeneous radionuclide distributions and provide dose estimations at the organ level. In a few applications, like radioimmunotherapy, the mean dose to an organ is not suitable to explain clinical observations, and knowledge of the dose at the tissular level is mandatory. Therefore, one must determine how particles lose their energy and what is the best way to represent tissues. The Monte Carlo method is appropriate to solve the problem of particle transport, but the question of the geometric representation of biology remains. In this paper, we describe a software (CLUSTER3D) that is able to build randomly biologically representative sphere cluster geometries using a statistical description of tissues. These geometries are then used by our Monte Carlo code called DOSE3D to perform particle transport. First results obtained on thyroid models highlight the need of cellular and tissular data to take into account actual radionuclide distributions in tissues. The flexibility and reliability of the method makes it a useful tool to study the energy deposition at various cellular and tissular levels in any configuration.