ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Biden executive order to facilitate AI data center power
As demand for artificial intelligence and data centers grows, President Biden issued an executive order yesterday aimed to ensure clean-energy power supply for the technology.
Herschel P. Smith, John C. Wagner
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 23-37
Technical Paper | doi.org/10.13182/NSE05-A2474
Articles are hosted by Taylor and Francis Online.
Certain reactor transients cause a reduction in moderator temperature and, hence, increased attenuation of neutrons and decreased response of excore detectors. This decreased detector response is of concern because of the credit assumed for detector-initiated reactor trip to terminate the transient. Explicit modeling of this phenomenon presents the analyst with a difficult problem because of the dense and optically thick neutron absorption media, given the constraint that precise response characteristics must be known in order to account for this phenomenon. The solution in this study was judged to be the use of Monte Carlo techniques coupled with robust variance reduction to accelerate problem convergence. A fresh discussion on the motivation for variance reduction is included, followed by separate accounts of manual and automated applications of variance reduction techniques. Finally, the results of both manual and automated variance reduction techniques are presented and compared.