ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Taro Ueki, Forrest B. Brown, D. Kent Parsons, James S. Warsa
Nuclear Science and Engineering | Volume 148 | Number 3 | November 2004 | Pages 374-390
Technical Paper | doi.org/10.13182/NSE03-95
Articles are hosted by Taylor and Francis Online.
In the nuclear engineering community, the error propagation of the Monte Carlo fission source distribution through cycles is known to be a linear Markov process when the number of histories per cycle is sufficiently large. In the statistics community, linear Markov processes with linear observation functions are known to have an autoregressive moving average (ARMA) representation of orders p and p - 1. Therefore, one can perform ARMA fitting of the binned Monte Carlo fission source in order to compute physical and statistical quantities relevant to nuclear criticality analysis. In this work, the ARMA fitting of a binary Monte Carlo fission source has been successfully developed as a method to compute the dominance ratio, i.e., the ratio of the second-largest to the largest eigenvalues. The method is free of binning mesh refinement and does not require the alteration of the basic source iteration cycle algorithm. Numerical results are presented for problems with one-group isotropic, two-group linearly anisotropic, and continuous-energy cross sections. Also, a strategy for the analysis of eigenmodes higher than the second-largest eigenvalue is demonstrated numerically.