ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Akitoshi Hotta, Minyan Zhang, Hiroshi Shirai
Nuclear Science and Engineering | Volume 148 | Number 2 | October 2004 | Pages 208-225
Technical Paper | doi.org/10.13182/NSE04-A2452
Articles are hosted by Taylor and Francis Online.
A coupled plant simulation system TRAC/BF1-ENTRÉE was applied to the Nuclear Energy Agency/National Security Council boiling water reactor turbine trip benchmark. Through regular exercise 3 and extreme scenarios 3 and 4, its adequacy and robustness were validated. It was deduced that the cross-section format and the core boundary conditions are major influential factors causing errors in three-dimensional power predictions. Power swings observed in extreme scenarios were attributed to intermittent void generation and void sweeping driven by rapid pressurization. Based on a series of sensitivity studies for extreme scenario 4, it was confirmed that neglect of in-channel direct heating causes a large positive reactivity insertion and neglect of bypass direct heating causes only a small change in reactivity effects. Specifying an integration time-step size of <1 ms is recommended for keeping the numerical error within an acceptable level. To investigate the detailed in-channel void distribution and its possible influences on the fuel thermal margin, a one-way coupled system between TRAC/BF1-ENTRÉE and the three-field subchannel code NASCA was developed. Detailed void distributions at the upper part of the core where the boiling transition will occur become sufficiently uniform during the major period of the turbine trip event. Their influences on the thermal margin seem negligible.