ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
M. Brovchenko, D. Heuer, E. Merle-Lucotte, M. Allibert, V. Ghetta, A. Laureau, P. Rubiolo
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 329-339
Technical Paper | doi.org/10.13182/NSE12-70
Articles are hosted by Taylor and Francis Online.
Molten salt reactors are liquid fuel reactors so that they are flexible in operation, but they are very different from solid fuel reactors in the approach to safety. This study concentrates on the specific concept named Molten Salt Fast Reactor (MSFR). Since this new nuclear technology is in development, safety is an essential point to be considered all along the research and development studies. After a short description of the MSFR systems, necessary to device accidental scenarios, this paper will focus on the decay heat evaluation of such a reactor. Among different contributions, the decay heat of fission products in the MSFR is evaluated to be low (3% of nominal power), mainly due to the reprocessing during the reactor operation. As a result, the contribution of the actinides is significant (0.5% of nominal power). However, the decay heat of the fission products is important, and among the different uncertainty sources, the fission yield uncertainties are pointed out. The unprotected loss of heat sink transients are studied in this paper. It appears that slow transients are favorable (>1 min) to minimize the temperature increase of the fuel salt. This work will be the basis of further safety studies as well as an essential parameter for the design of the draining system.