ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
P. Leconte, C. Vaglio-Gaudard, R. Eschbach, M. Antony, J. Di-Salvo, A. Pépino
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 308-317
Technical Paper | doi.org/10.13182/NSE12-56
Articles are hosted by Taylor and Francis Online.
The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a pressurized water reactor (PWR) between five and seven cycles, and also on the experimental validation of the spent fuel reactivity loss with burnup, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and the nuclear data responsible for the reactivity loss. This program also offers unique experimental data for fuels with a burnup reaching 85 GWd/tonne, as spent fuels in French PWRs have never exceeded 70 GWd/tonne up to now.The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first step, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists of the self-shielding of cross sections on the 281-energy-group SHEM mesh, followed by flux calculation by the method of characteristics in a two-dimensional exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between experiment and calculation shows satisfactory results with the JEFF3.1.1 library, which predicts the reactivity loss within 2% for burnup of ~75 GWd/tonne and within 4% for burnup of ~85 GWd/tonne.