ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Ding She, Ang Zhu, Kan Wang
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 259-265
Technical Paper | doi.org/10.13182/NSE12-48
Articles are hosted by Taylor and Francis Online.
Burnup calculations consider the time dependence of the material composition or isotope inventory, which has important influence on the neutronic properties of a nuclear reactor. An essential part of burnup calculations is to solve the burnup equations, which can be approximately treated as a first-order linear system and can be solved by means of matrix exponential methods. However, because of the large decay constants of short-lived nuclides, the coefficient matrix of the burnup equations has a large norm and a vast range of spectra. Consequently, it is quite difficult to directly compute the matrix exponential using conventional methods such as the truncated Taylor expansion and the Pade approximation. Recently, the Chebyshev rational approximation method (CRAM), which is based on rational functions on the complex plane, has shown the capability to deal with this problem. In this paper an alternative method based on the generalized Laguerre polynomials is proposed to compute the exponential of the burnup matrix. Against CRAM, the Laguerre polynomial approximation method (LPAM) has simple recursions for obtaining the coefficients in any order, and all the computations are real arithmetic. A point burnup case and a pin-cell burnup case are calculated for validation, and results show that LPAM is promising for burnup calculations.