ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Nam Zin Cho, Seungsu Yuk, Han Jong Yoo, Sunghwan Yun
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 227-238
Technical Paper | doi.org/10.13182/NSE12-68
Articles are hosted by Taylor and Francis Online.
In current practice of nuclear reactor design analysis, the whole-core diffusion nodal method is used in which nodal parameters are provided by a single-assembly lattice physics calculation with the zero net current boundary condition. Thus, the whole-core solution is not transport, because the interassembly transport effect is not incorporated. In this paper, the overlapping local/global iteration framework that removes the limitation of the current method is described. It consists of two-level iterative computations: half-assembly overlapping local problems embedded in a global problem. The local problem can employ heterogeneous fine-group deterministic or continuous-energy stochastic (Monte Carlo) transport methods, while the global problem is a homogenized coarse-group transport-equivalent model based on partial current-based coarse-mesh finite difference methodology. The method is tested on several highly heterogeneous multislab problems and a two-dimensional small core problem, with encouraging results.