ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
R. A. Rydin, M. L. Woosley, Jr.
Nuclear Science and Engineering | Volume 126 | Number 3 | July 1997 | Pages 341-344
Technical Note | doi.org/10.13182/NSE97-A24486
Articles are hosted by Taylor and Francis Online.
In a dynamic simulation method recently developed for accelerator-driven subcritical waste transmutation systems, power levels are renormalized dynamically based on the changing reactivity of the flowing system. For such systems, the power varies directly with the source strength, and inversely with the reactivity. The prompt-jump form of the point-kinetics equations has been used to provide the dynamic renormalization factor for the spatially dependent flowing-fuel system. A unique characteristic of the source-dominated system has been discovered. In the traditional reactor system, power changes are controlled by the half-life for decay of the longest-lived delayed neutron precursors. For the source-dominated system, the delayed neutron precursors do not appreciably slow the response of the system.