ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. A. Rydin, M. L. Woosley, Jr.
Nuclear Science and Engineering | Volume 126 | Number 3 | July 1997 | Pages 341-344
Technical Note | doi.org/10.13182/NSE97-A24486
Articles are hosted by Taylor and Francis Online.
In a dynamic simulation method recently developed for accelerator-driven subcritical waste transmutation systems, power levels are renormalized dynamically based on the changing reactivity of the flowing system. For such systems, the power varies directly with the source strength, and inversely with the reactivity. The prompt-jump form of the point-kinetics equations has been used to provide the dynamic renormalization factor for the spatially dependent flowing-fuel system. A unique characteristic of the source-dominated system has been discovered. In the traditional reactor system, power changes are controlled by the half-life for decay of the longest-lived delayed neutron precursors. For the source-dominated system, the delayed neutron precursors do not appreciably slow the response of the system.