ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. van Geemert, F. Jatuff, F. Tani, R. Chawla
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 162-171
Technical Paper | doi.org/10.13182/NSE04-A2448
Articles are hosted by Taylor and Francis Online.
With reactivity being the most important integral reactor physics quantity - and simultaneously the one that can be measured with the highest accuracy - there is a great interest in understanding how possible space- and energy-dependent data and/or modeling discrepancies may propagate into a calculated reactivity change, and with which magnitude this occurs. In the context of pin removal reactivity effects in a light water reactor assembly, for example, it is illustrative to carry out, for any arbitrary localized material composition perturbation, a decomposition of the total effect into individual space- and energy-dependent contributions of the different unit cells in the assembly. If this decomposition is normalized to +100% in the case of a positive reactivity effect and to -100% in the case of a negative reactivity effect, an importance map is established that indicates the relative contribution (in percent) of each individual contributing cell to the total reactivity effect caused by the localized material composition change. Such an importance map can be interpreted as a sensitivity matrix that quantifies the final discrepancy in a calculated reactivity effect, with respect to its reference value, as a weighted sum of the complete collection of cell-wise data and/or modeling discrepancies. The current paper outlines the basic theory and gives certain practical applications of the proposed decomposition methodology. Thus, it is found that the developed methodology offers in-depth, quantitative explanations for calculational discrepancies observed in the analysis of fuel pin removal experiments conducted in the framework of the LWR-PROTEUS program at the Paul Scherrer Institute.