ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
S. M. Ghiaasiaan, J. R. Muller, D. L. Sadowski, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 126 | Number 2 | June 1997 | Pages 229-238
Technical Paper | doi.org/10.13182/NSE97-A24476
Articles are hosted by Taylor and Francis Online.
Critical discharge of highly subcooled water through a cylindrical channel with a 0.78-mm inside diameter and 0.78 mm in length was experimentally studied. The range of the initial water subcooling was 76 to 200 K, and the initial water pressure was in the range 0.5 to 5.2 MPa. The measured critical mass fluxes were compared with three models appropriate for application to critical flow in small and short channels.The experimental results confirm the significant effect of pressure losses on critical discharge rates in small channels. They indicate, however, that the frictional pressure losses in cracks may be considerably larger than losses predicted by the widely used correlations for rough channels. It is shown that models and correlations based on isentropic homogeneous equilibrium flow in the channel accurately predict the critical flow data, provided that the liquid initial stagnation pressure is adequately corrected for the channel entrance pressure loss.