ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Man Gyun Na, Dong Won Jung, Sun Mi Lee
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 153-161
Technical Paper | doi.org/10.13182/NSE04-A2447
Articles are hosted by Taylor and Francis Online.
A receding horizon control method is used to solve on-line, at each time step, an optimization problem for a finite future interval and to implement the first optimal control input as the current control input. The receding horizon control method is combined with a parameter estimator to overcome the problems of the linear modeling and time-varying characteristics of a process. It is a suitable control strategy for time-varying systems, in particular, because the parameter estimator identifies a controller design model recursively at each time step, and also the receding horizon controller recalculates an optimal input at each time step by using newly measured signals. The proposed controller is applied to the axial power distribution control in a pressurized water reactor. The reactor dynamics model used for computer simulations is a two-point xenon oscillation model in which the reactor core is axially divided into two regions (upper and lower halves) and each region is assumed to have a single input and a single output and to be coupled with the other region. It is shown from numerical simulations that the proposed controller exhibits very fast tracking responses due to the step and ramp changes of axial target shape and also works well in a time-varying parameter condition.