ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
P. E. Labeau, Z. Ould Amar
Nuclear Science and Engineering | Volume 126 | Number 2 | June 1997 | Pages 146-157
Technical Paper | doi.org/10.13182/NSE97-A24468
Articles are hosted by Taylor and Francis Online.
Monte Carlo games especially designed for probabilistic dynamics problems have been shown to be very efficient for the calculation of a pressurized water reactor (PWR) pressurizer unreliability. However, these methods rely on the implicit hypothesis that transition rates and probabilities, as well as control means response times, can be precisely determined. But reality is different: Because of a lack of knowledge, only crude estimations of transition rates can be obtained. Moreover, control device response times cannot be assumed constant for rapid transients. Therefore, considering distributed values of these quantities seems more realistic. Several attempts to take into account these uncertainties, while conserving as many advantages as possible of the high-efficiency simulation techniques, are summarized. The PWR pressurizer application is used to compare the capabilities of the proposed methods.