ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. Soule, W. Assal, P. Chaussonnet, C. Destouches, C. Domergue, C. Jammes, J.-M. Laurens, J.-F. Lebrat, F. Mellier, G. Perret, G. Rimpault, H. Servière, G. Imel, G. M. Thomas, D. Villamarin, E. Gonzalez-Romero, M. Plaschy, R. Chawla, J. L. Kloosterman, Y. Rugama, A. Billebaud, R. Brissot, D. Heuer, M. Kerveno, C. Le Brun, E. Liatard, J.-M. Loiseaux, O. Méplan, E. Merle, F. Perdu, J. Vollaire, P. Baeten
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 124-152
Technical Paper | doi.org/10.13182/NSE01-13C
Articles are hosted by Taylor and Francis Online.
The MUSE program (multiplication with an external source) is in progress at the MASURCA critical facility at the Cadarache Research Center of the Commissariat à l'Energie Atomique in France. The program is dedicated to the physics studies of accelerator-driven systems in support of transmutation studies of minor actinides and long-lived fission products. It began in 1995 with the coupling of a Cf source in MASURCA and was followed by a commercial (d,T) source. In 2001, a specially constructed (d,D)/(d,T) neutron generator (GENEPI) was placed in MASURCA and the MUSE-4 program commenced.We describe the first phases of the MUSE-4 program, with data presented that were obtained up to about the summer of 2002. We present some results from the "reference" configuration, which can operate at critical. We present traverses of measured fission reaction rates, with comparison to calculations. Also in the reference configuration, we performed activation foil measurements and present these results compared to calculations.Because a major objective of the MUSE program is to test and qualify methods of subcritical reactivity measurement, we have devoted a major portion of our studies to this area. We have used classical methods (rod drop, source multiplication) to attempt to measure the subcritical level. In these early phases we studied core configurations of around keff = 0.995. Deeper subcriticality (keff = 0.96) was achieved by inserting a safety rod.In addition to the methods mentioned above, we have devoted a lot of effort to pulse neutron source, fluctuation (Rossi- and Feynman-), and transfer function methods (e.g., cross-power spectral density). We present our preliminary results of all the methods, with some discussion regarding cross comparison.