ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
I. Pázsit, M. Ceder, Z. Kuang
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 67-78
Technical Paper | doi.org/10.13182/NSE04-A2442
Articles are hosted by Taylor and Francis Online.
In future planned accelerator-driven subcritical systems, as well as in some recent related experiments, the neutron source to be used will be a pulsed accelerator. For such cases the application of the Feynman-alpha method for measuring the reactivity is not straightforward. The dependence of the Feynman Y(T) curve (variance-to-mean minus unity) on the measurement time T will show quasi-periodic ripples, corresponding to the periodicity of the source intensity. Correspondingly, the analytical solution will become much more complicated. One can perform such a pulsed Feynman-alpha measurement in two different ways: either by synchronizing the start of each measurement block with the pulses ("deterministic pulsing") or by not synchronizing ("random pulsing"). The variance-to-mean has been derived analytically for both cases and reported briefly in previous publications. However, two different methods were used and the two cases were reported separately. In this paper we give a unified treatment and a comparative analysis of the two cases. It is found that the stochastic pulsing leads to an analytic solution that is much simpler than that for the deterministic case, and the relationship between the pulsed and continuous source is much more straightforward than in the deterministic case. However, the amplitude of the ripples, constituting a deviation of the pulsed Feynman Y curve from the smooth curve corresponding to the traditional constant source case, is much larger for the stochastic pulsing than for the deterministic one. The reasons for this are also analyzed in the paper. The results are in agreement with recent measurements, made by other groups in the European Community-supported project MUSE.