ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Soo-Youl Oh, Jonghwa Chang, Luiz C. Leal
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 43-49
Technical Paper | doi.org/10.13182/NSE04-A2439
Articles are hosted by Taylor and Francis Online.
We have derived formulas in a general form for suggesting the neutron orbital angular momentum quantum number l to each neutron resonance if it is not identified experimentally. By assuming the (2J + 1) law of level density, these general formulas are reduced to the formulas found in previous works. The suggestion of l is based on the probability that a resonance having a certain value of gn is an l-wave resonance. The probability is calculated from the Bayes theorem on conditional probability. For each l, the probability density function (pdf) of gn was derived from the 2 distribution proposed by Porter and Thomas. The pdf takes into account two possible channel spins that result in the same total spin for a given l larger than zero. Meanwhile, regardless of the resolution of measurement, we suggest adopting the level density as the prior probability in the Bayesian approach, as Gyulassy et al. did. As a sample problem, we presented the result of l-assignment for 109Ag resonances. The SUGGEL code, in which the methodology is incorporated, correctly assigned l's for 67 among 70 resonances for which l's had been determined experimentally. The other test for 27Al showed the applicability of the code as a preanalysis tool, even though such applicability is limited to a certain extent for light nuclides. The use of the code SUGGEL is expected to reduce the number of repeated runs of a fitting code such as SAMMY, thus reducing time and effort for the extraction of resonance parameters from measurements.