ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. Demazière, I. Pázsit
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 1-29
Technical Paper | doi.org/10.13182/NSE04-A2437
Articles are hosted by Taylor and Francis Online.
This paper deals with the estimation of the moderator temperature coefficient of reactivity (MTC) by noise analysis. The current noise analysis-based MTC measurement, relying on the cross correlation between the neutron noise measured by a single in-core neutron detector and the local temperature noise given by a single core-exit thermocouple located at the top of the same fuel assembly, or of a neighboring fuel assembly, is not accurate. The MTC is systematically underestimated by a factor of 2 to 5 compared to its design-predicted value. A theoretical study shows that, in case of nonhomogeneous moderator temperature noise, the core-averaged moderator temperature noise should be used for the MTC estimation. The new estimation method can reach up to 3% accuracy as compared with the results of core calculations for the Swedish Ringhals-2 pressurized water reactor (PWR). We show via noise measurements performed at the Ringhals-2 PWR that the moderator temperature noise is actually radially strongly heterogeneous and loosely coupled. The new MTC noise estimator is demonstrated to provide an accurate MTC evaluation, with the core-averaged moderator temperature noise estimated via the use of many radial in-core gamma-thermometers. More important, different forms of weighting functions are suggested to calculate the core-averaged moderator temperature noise. This new MTC noise estimator, which is nonintrusive and free of calibration, can therefore be applied to monitor the MTC throughout the cycle.