ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Hyun Chul Lee, Ku Young Chung, Chang Hyo Kim
Nuclear Science and Engineering | Volume 147 | Number 3 | July 2004 | Pages 275-291
Technical Paper | doi.org/10.13182/NSE04-A2433
Articles are hosted by Taylor and Francis Online.
The two popular transverse integrated nodal methods (TINMs), the nodal expansion method (NEM) and analytical nodal method (ANM), and the analytic function expansion nodal (AFEN) method are integrated into a single unified nodal formulation for the space-time kinetics calculations in rectangular core geometry. In particular, the nodal coupling equations of the conventional ANM and AFEN method are reformulated by the matrix function theory based on the unified nodal method (UNM) principle for the solution to the transient two-group neutronics benchmark problems. The difference between the two transient AFEN formulations by the UNM and the conventional AFEN principles is pointed out. The performance of the UNM formulation is examined in terms of the solutions to the transient light water reactor benchmark problems such as the Nuclear Energy Agency Committee on Reactor Physics pressurized water reactor rod ejection kinetics benchmark problems. Through comparison of several nodal computational options by the UNM formulation, it is shown that one node-per-fuel assembly (N/A) calculations by the AFEN method are superior to those by the NEM and the ANM, but that 4 N/A calculations by the AFEN method are not better than those by ANM, in prediction accuracy at the sacrifice of the computational time. The advantages of the transient UNM formulation over the conventional TINM and AFEN method formulations are discussed.