ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Hyun Chul Lee, Ku Young Chung, Chang Hyo Kim
Nuclear Science and Engineering | Volume 147 | Number 3 | July 2004 | Pages 275-291
Technical Paper | doi.org/10.13182/NSE04-A2433
Articles are hosted by Taylor and Francis Online.
The two popular transverse integrated nodal methods (TINMs), the nodal expansion method (NEM) and analytical nodal method (ANM), and the analytic function expansion nodal (AFEN) method are integrated into a single unified nodal formulation for the space-time kinetics calculations in rectangular core geometry. In particular, the nodal coupling equations of the conventional ANM and AFEN method are reformulated by the matrix function theory based on the unified nodal method (UNM) principle for the solution to the transient two-group neutronics benchmark problems. The difference between the two transient AFEN formulations by the UNM and the conventional AFEN principles is pointed out. The performance of the UNM formulation is examined in terms of the solutions to the transient light water reactor benchmark problems such as the Nuclear Energy Agency Committee on Reactor Physics pressurized water reactor rod ejection kinetics benchmark problems. Through comparison of several nodal computational options by the UNM formulation, it is shown that one node-per-fuel assembly (N/A) calculations by the AFEN method are superior to those by the NEM and the ANM, but that 4 N/A calculations by the AFEN method are not better than those by ANM, in prediction accuracy at the sacrifice of the computational time. The advantages of the transient UNM formulation over the conventional TINM and AFEN method formulations are discussed.