ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
James S. Warsa, Todd A. Wareing, Jim E. Morel
Nuclear Science and Engineering | Volume 147 | Number 3 | July 2004 | Pages 218-248
Technical Paper | doi.org/10.13182/NSE02-14
Articles are hosted by Taylor and Francis Online.
A loss in the effectiveness of diffusion synthetic acceleration (DSA) schemes has been observed with certain SN discretizations on two-dimensional Cartesian grids in the presence of material discontinuities. We will present more evidence supporting the conjecture that DSA effectiveness will degrade for multidimensional problems with discontinuous total cross sections, regardless of the particular physical configuration or spatial discretization. Fourier analysis and numerical experiments help us identify a set of representative problems for which established DSA schemes are ineffective, focusing on diffusive problems for which DSA is most needed. We consider a lumped, linear discontinuous spatial discretization of the SN transport equation on three-dimensional, unstructured tetrahedral meshes and look at a fully consistent and a "partially consistent" DSA method for this discretization. The effectiveness of both methods is shown to degrade significantly. A Fourier analysis of the fully consistent DSA scheme in the limit of decreasing cell optical thickness supports the view that the DSA itself is failing when material discontinuities are present in a problem. We show that a Krylov iterative method, preconditioned with DSA, is an effective remedy that can be used to efficiently compute solutions for this class of problems. We show that as a preconditioner to the Krylov method, a partially consistent DSA method is more than adequate. In fact, it is preferable to a fully consistent method because the partially consistent method is based on a continuous finite element discretization of the diffusion equation that can be solved relatively easily. The Krylov method can be implemented in terms of the original SN source iteration coding with only slight modification. Results from numerical experiments show that replacing source iteration with a preconditioned Krylov method can efficiently solve problems that are virtually intractable with accelerated source iteration.