ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Dan G. Cacuci, Mihaela Ionescu-Bujor
Nuclear Science and Engineering | Volume 147 | Number 3 | July 2004 | Pages 204-217
Technical Paper | doi.org/10.13182/04-54CR
Articles are hosted by Taylor and Francis Online.
Part II of this review paper highlights the salient features of the most popular statistical methods currently used for local and global sensitivity and uncertainty analysis of both large-scale computational models and indirect experimental measurements. These statistical procedures represent sampling-based methods (random sampling, stratified importance sampling, and Latin Hypercube sampling), first- and second-order reliability algorithms (FORM and SORM, respectively), variance-based methods (correlation ratio-based methods, the Fourier Amplitude Sensitivity Test, and the Sobol Method), and screening design methods (classical one-at-a-time experiments, global one-at-a-time design methods, systematic fractional replicate designs, and sequential bifurcation designs). It is emphasized that all statistical uncertainty and sensitivity analysis procedures first commence with the "uncertainty analysis" stage and only subsequently proceed to the "sensitivity analysis" stage; this path is the exact reverse of the conceptual path underlying the methods of deterministic sensitivity and uncertainty analysis where the sensitivities are determined prior to using them for uncertainty analysis.By comparison to deterministic methods, statistical methods for uncertainty and sensitivity analysis are relatively easier to develop and use but cannot yield exact values of the local sensitivities. Furthermore, current statistical methods have two major inherent drawbacks as follows:1. Since many thousands of simulations are needed to obtain reliable results, statistical methods are at best expensive (for small systems) or, at worst, impracticable (e.g., for large time-dependent systems).2. Since the response sensitivities and parameter uncertainties are inherently and inseparably amalgamated in the results produced by these methods, improvements in parameter uncertainties cannot be directly propagated to improve response uncertainties; rather, the entire set of simulations and statistical postprocessing must be repeated anew. In particular, a "fool-proof" statistical method for correctly analyzing models involving highly correlated parameters does not seem to exist currently, so that particular care must be used when interpreting regression results for such models.By addressing computational issues and particularly challenging open problems and knowledge gaps, this review paper aims at providing a comprehensive basis for further advancements and innovations in the field of sensitivity and uncertainty analysis.