ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
R. Christian Penland, Yousry Y. Azmy, Paul J. Turinsky
Nuclear Science and Engineering | Volume 125 | Number 3 | March 1997 | Pages 284-299
Technical Paper | doi.org/10.13182/NSE97-A24275
Articles are hosted by Taylor and Francis Online.
An error analysis is presented of the quartic polynomial nodal expansion method for solving the one-dimensional, neutron diffusion equation that originates from employing the transverse integration technique. Error bound expressions are determined for the L∞ error norms associated with the nodal surface flux and various moments of the nodal flux. Employing several test problems, these global error bounds were found to be conservative, but not excessively, in bounding the true errors Utilizing a functional form of the local error estimate for the node average flux, it is shown that a mesh-doubling technique can be effectively utilized to estimate the required cell size for uniform mesh refinement to achieve a specified global error fidelity. When employed in conjunction with a multigrid acceleration technique, this provides the foundations upon which to develop an adaptive spatial mesh algorithm.