ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S.L. Eaton, C.A. Beard, M. L. Adams
Nuclear Science and Engineering | Volume 125 | Number 3 | March 1997 | Pages 249-256
Technical Paper | doi.org/10.13182/NSE97-A24273
Articles are hosted by Taylor and Francis Online.
The LAHET code system calculations and experimental results for proton interactions with an energy <50 MeV are compared. For these energies, the theories behind the LAHET models are not applicable. Three quantities compared are (a) the magnitude of the neutron yield generated through proton interactions, (b) the energy and angular distributions of the resultant neutrons, and (c) the residual nuclei produced by proton interactions (spallation products). The comparisons are for protons incident on iron and copper, except in the case of the energy and angular distributions, which are calculated only for iron. The neutron yields predicted by LAHET agree with published measurements to within 50% for both materials. For iron, the predicted energy and angular distributions agree to within a factor of 3. Finally, the predicted spallation product yields of both materials agree with measurements to within a factor of 4.