ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Kazuyuki Takase, Kunugi Tomoaki, Masurou Ogawa, Yasushi Seki
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 223-231
Technical Paper | doi.org/10.13182/NSE97-A24269
Articles are hosted by Taylor and Francis Online.
As one of thermofluid safety studies in the International Thermonuclear Experimental Reactor, buoyancy-driven exchange flow behavior through breaches of a vacuum vessel (VV) has been investigated quantitatively by using a preliminary loss-of-vacuum-event (LOVA) apparatus that simulated the tokamak VV of a fusion reactor with a small-scaled model. To carry out the present experiments under the atmospheric pressure condition, helium gas and air were provided as the working fluids. The inside of the VV was initially filled with helium gas and the outside was atmosphere. The breaches on the VV under the LOVA condition were simulated by opening six simulated breaches to which were set the different positions on the VV. When the buoyancy-driven exchange flow through the breach occurred, helium gas went out from the inside of the VV through the breach to the outside and air flowed into the inside of the VV through the breach from the outside. The exchange rate in the VV between helium gas and air was calculated from the measured weight change of the VV with time since the experiment has started. Experimental parameters were breach position, breach number, breach length, breach size, and breach combination. The present study clarifies that the relation between the exchange rate and the breach position of the VV depended on the magnitude of the potential energy from the ground level to the breach position, and then, the exchange rate decreased as the breach length increased and as the breach size decreased.