ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
M. Yamagiwa
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 218-222
Technical Paper | doi.org/10.13182/NSE97-A24268
Articles are hosted by Taylor and Francis Online.
Production of 18F, a positron emitter, with fast protons from D-3He fusion reactions and oxygen (18O) impurities in a large tokamak is studied numerically. A high-energy deuterium beam is used for proton production enhancement. The yield of 18F is found to be optimized in a somewhat dirty plasma with an effective ionic charge number of Zeff ∼ 5 and doubled by the inclusion of the possible resonance in the 18O(p,n)18F reaction. The yield in the deuterium beam-injected 3He plasma is 1000 times larger than by standard methods using a cyclotron. A comparison is also made with the yield in an advanced plasma regime.