ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
F. Maekawa, Y. Oyama
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 205-217
Technical Paper | doi.org/10.13182/NSE97-A24267
Articles are hosted by Taylor and Francis Online.
Neutron spectra below 10 keV in an iron shield assembly bombarded by deuterium-tritium neutrons are measured with accuracy between 5 to 13% by adopting the slowing-down time method. The measurement supplemented previous spectrum measurements for higher energies so that the neutron spectrum in the whole energy range from 14 MeV down to 0.3 eV is now available. Benchmark tests of iron data in JENDL-3.1, JENDL-3.2, JENDL fusion file, and FENDL/E-1.0 were carried out in the whole energy range with experimental uncertainty at ∼10% by utilizing the present and previous experiments. As a result, it was found that cross-section data in the newer versions of JENDL were improved in terms of agreement with the experiment. Calculation with JENDL fusion file and FENDL/E-1.0 could predict neutron fluxes in the whole energy range within 20 and 15%, respectively. Possible over- and underestimations for nonelastic and elastic cross sections, respectively, at 14 MeV in all JENDLs were pointed out. It was confirmed that low-energy neutron fluxes were very sensitive to Q values for discrete inelastic cross sections of natural iron and 57Fe(n,n’1,) reaction, which were not adequately treated in JENDL-3.1.