ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
S. Hlavá, L. Dostál, I. Turzo, A. Pavlik, H. Vonach
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 196-204
Technical Paper | doi.org/10.13182/NSE97-A24266
Articles are hosted by Taylor and Francis Online.
The gamma radiation from the interaction of 14.6-MeV neutrons with aluminum has been investigated by high-resolution germanium-detector gamma-ray spectroscopy. Cross sections for gamma lines from the 27Al(n,n’γ), (n,pγ), and (n,npγ) reactions have been measured at an emission angle of 125 deg. The results are compared with previous measurements and with predictions based on the statistical theory of nuclear reactions (including direct and precompound contributions). The current results are within the range of values reported in the widely discrepant previous measurements and thus allow the resolution of these discrepancies. The relative intensities of the gamma lines analyzed in this work are in good agreement with the results of a white neutron source measurement performed by two of the authors at Los Alamos National Laboratory. The measured gamma-ray production cross sections were compared with the results of nuclear model calculations using the GNASH code. The agreement with the calculated cross sections is unsatisfactory. The results of the statistical calculations are on average ∼20% below the measured cross sections, and there are also some discrepancies between the calculated and measured relative intensities for the different lines from the (n,n’γ) reaction.